l'algorithme de partition d'un entier ape comme système de production icsografique des noeuds (spin)

présentation de l'algorithme de partition d'un entier ape

$$
\begin{array}{r}
(\forall n \geq 1 \in N) p(n): S I n>1 \text { ALORS }(1, n-1) \\
\operatorname{SINON}(m+1, n-1) \text { où } m=\Sigma(1)
\end{array}
$$

deux consignes (extraire 1 de n, puis de $n-1$, jusqu'à épuisement des unités de n, et, à chaque étape, additionner les unités extraites) suffisent à obtenir la totalité des combinaisons de sommants d'un entier quelconque. à chaque étape de la partition, une seule opération est effectuée, sur un seul élément à la fois, pas à pas. l'analyse ne saurait oublier aucun élément, ni aucune de leurs combinaisons.
chaque entier n se répartit en partages de sommants : $p(n)$. ces partages se répartissent en orbitales (ω). les orbitales d'un entier n se rassemblent en une orbite $\left(\Omega_{n}\right)$.
quel que soit $n \geq 2$, il se situe dans un intervalle $I_{n}=\left[2^{q}+1,2^{q+l}\right]$ où $q \in \mathrm{~N}_{0 \text { à } \infty}$. le nombre d'entiers dans l'intervalle est $\left|I_{n}\right|=2^{q}$.
les nombres de partages, d'orbitales et de partages par orbitale sont respectivement les suivants :

$$
(\forall n \geq 2) p(n)=2^{n-1} \rightarrow 2^{n-q-2} \omega \text {, soit } 2^{q+1} \text { partages par orbitale }
$$

premières partitions ape

dans une partition donnée, les partages palindromes sont notés par un astérisque : *, les partages miroirs sont reliés par un crochet :].

$$
\begin{aligned}
& \mathbf{1}^{*} \\
& \omega_{0} \\
& \quad \Omega_{I}=\omega_{0}=1
\end{aligned}
$$

on peut considérer qu'il n'y a pas de partition de l (sauf à sous-entendre le 0 , mais il y aurait alors une infinité de partitions de n'importe quel entier, ce qui serait une zénonification de l'ape lui ôtant toute opérativité. la partition n'est pas une atomistique), et écrire $\Omega_{l}=\varnothing$. quand il y a 1 , il y a 1 et c'est tout. la seule activité qui reste est de l'additionner à un autre l qui, en l'occurrence, n'est pas là. mais l étant le plus petit sommant des autres entiers, il est concordant qu'il soit son propre et unique sommant.

$$
\Omega_{2}=\omega_{0}=2,11
$$

$$
\Omega_{3}=\omega_{0}=3,12,21,111
$$

l'orbitale ω_{0} ne comportant pas le miroir de 13 , nous plaçons 31 en entrée d'une nouvelle orbitale, et obtenons : $\Omega_{4}=\left(\omega_{0}, \omega_{1}\right)=\left\{(4,13,22,1111)_{0},(31,121,211,112)_{1}\right\}$
l'obtention de tous les palindromes et de toutes les paires miroir nous assure qu'il n'y a pas d'autre orbitale.

$\Omega_{5}=\left(\omega_{0}, \omega_{l}\right)=\left\{(5,14,23,1112,41,131,221,11111)_{0,}(32,1211,212,311,122,2111\right.$, 113) 1$\}$ la même procédure donne les orbites suivantes :

$$
\Omega_{6}=\left(\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right)=\left\{(6,15,24,1113,42,1311,222,111111)_{0},(51,141,231,11121,\right.
$$ 411, 132, 2211, 11112) $1,(3111,123,2112,1131,321,12111,213,1122) 2,(114,33$, 1212, 2121, 11211, 312, 1221, 21111) 3\} $\Omega_{7}=\left(\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}, \omega_{7}\right)=\left\{(7,16,25,1114,43,1312,2221,1111111)_{0},(61\right.$, 151, 241, 11131, 421, 13111, 223, 111112) $1,(52,1411,232,111211,412,1321,22111$, $11113)_{2},(4111,133,2212,111121,511,142,2311,11122) 3,(34,1213,2122,112111$, $\left.313,1222,211111,115)_{4},(2131,11221,31111,124,2113,1132,3211,12112)\right)_{5},(322$, 121111, 214, 1123, 3112, 1231, 21121, 11311) 6, (1141, 331, 12121, 21211, 11212, 3121, 12211, 21112) 7\}

à partir de $n=8$, le nombre d'orbitales $(16,16,32,64$, etc.) rend la procédure fastidieuse et nous préférons programmer l'algorithme sur ordinateur. ce qui devrait ne pas poser de problème, étant donné que la progression du nombre de partages d'un entier est indexée à celle des puissances de 2 .

présentation littérale de l'algorithme de partition d'un entier ape

```
\alpha=(\Delta,K)
où }\Delta=«\mathrm{ est différent de la lettre précédente »
et K= «est identique à la lettre précédente»
```

cet alphabet à deux opérateurs permet de retranscrire n'importe quel mot ${ }^{1}$ composé de ces deux seules lettres, quel qu'en soit le nombre d'occurrences, de la manière suivante :
le mot quelconque, ici d'une longueur de 7 lettres, $\Delta K K \Delta \Delta K \Delta$, devient, à la ligne suivante, $\Delta \Delta K \Delta K \Delta \Delta^{2}$
prenons le mot long de 3 lettres $\Delta \Delta \Delta$, et appliquons-lui la procédure ape littérale :
$\Delta \Delta \Delta$
$\Delta \mathrm{KK}$
$\Delta \Delta \mathrm{K}$
$\Delta \mathrm{K} \Delta$
indiquons le nombre de lettres en exposant, chaque fois, de sa lettre :

$$
\begin{gathered}
\Delta^{3} \\
\Delta \mathrm{~K}^{2} \\
\Delta^{2} \mathrm{~K} \\
\Delta \mathrm{~K} \Delta
\end{gathered}
$$

ne retenons que les exposants (lorsqu'une lettre n'en comporte pas, l'exposant l est sousentendu) :
où nous reconnaissons l'orbitale unique de l'orbite de 3 .
cette procédure donne avec la même régularité la totalité des sommants de la totalité de chacun des entiers.

observations sur l'ape numérique \& littéral

cette présentation littérale de l'ape nous déshabitue de la seule considération numérique des entiers et de leurs sommants et nous invite à accéder à la structure une à l'œuvre dans cette présentation duelle de l'ape, où chaque entier apparaît comme composition d'unités circulairement dissociées et agrégées.
l'usage de parenthèses met en évidence la communauté de ces deux présentations. ainsi, pour l'entier 3, nous obtenons :
(1) (1) (1)

[^0]le passage d'une lettre à l'autre (ΔK ou $K \Delta$) s'évoque alors comme changement de regroupement d'unités, autrement dit, comme fermeture et ouverture de parenthèses.
de fait, l'ape numérique ne procède pas autrement. la soustraction d'une unité à un nombre supérieur à l correspond à sa mise à part, et du reste de son nombre de départ et du reste du partage, lesquels, réciproquement, s'en distinguent. l'addition des unités manifeste, quant à elle, la formation de nouveaux ensembles par contiguité.
nous substituons à chaque unité son parenthésage,
$$
((()))
$$
() ())
(()) ()
() () ()
ce qui fait apparaître les partages de l'algorithme de partition comme distributions de places.
nous pouvons donc établir un lien entre l'ape et l'analyse icsografique des mots parenthésés (voir rattachement encore aux trajets, et mots de profondeur des parenthèses, $p . X)$.

ape \& graphes de connexité nœudiens

les sommants étant ainsi littéralement dénombrés, nous en dessinons les volutions en associant à chaque unité un croisement de nœud, que nous représentons plastiquement par des arêtes ($\lrcorner-\subset \mathrm{ou} I^{2}$) de graphes de connexité nœudiens.
ainsi, pour continuer avec l'orbitale unique de 3, nous obtenons les partages de croisements suivants :

la combinatoire de tous les regroupements d'arêtes, en ribambelle, faisceau ou link ${ }^{3}$, donne les configurations - positions relatives de groupes de croisements - suivantes :

$$
\begin{gathered}
\text { III ou } \supset-0-\circ \subset \\
\supset-\subset \text { II ou } \supset-\subset \supset-0-\subset \\
\text { II } \supset-\subset \text { ou } \supset-0-\subset \supset-\subset \\
\supset-0-0-\subset \text { ou III }
\end{gathered}
$$

nous en formons les graphes:
III ou Ω
III ou Ω
III ou Ω
Q ou III
or
où nous reconnaissons les graphes duaux du nœeud 3 centre ${ }^{4}$.
à une lunule en faisceau, un croisement supplémentaire ne peut ici s'adjoindre qu'en faisceau (procédure f du système de production icsografique des nœuds (spin)). à une lunule en ribambelle, un tiers croisement ne peut ici s'adjoindre qu'en ribambelle (procédure r du spin) revenant, ici, toujours à une adjonction en $\operatorname{link}(\operatorname{spin}: \mathcal{L})$.

[^1]les configurations possibles à 3 croisements n＇offrant guère de possibilités combinatoires，nous passons directement à la première orbitale de l＇orbite de 6 ：
\[

$$
\begin{gathered}
6 \\
15 \\
24 \\
1113 \\
42 \\
1311 \\
222 \\
111111
\end{gathered}
$$
\]

nous savons à présent voir directement les compositions graphiques correspondantes et commençons sans a priori la combinatoire des graphes possibles pour chaque partage．
cependant，comme il est toujours possible de lier 6 arêtes en un seul faisceau ou en une seule ribambelle fermée（ce qui，dans les deux cas，revient au même nœud n－centres correspondant aux n unités de l＇entier considéré），et que nous voulons faire apparaître les différences au sein de et entre chaque partage，nous excluons a fortiori cette possibilité lorsque d＇autres s＇offrent．

6
IIIIII
－$-\mathrm{O}-\mathrm{O}-\mathrm{C}$
$15>-\subset$ IIIII
$\supset \subset \supset$ ○—————
24 II IIII

II $\supset-\ldots-\ldots$
$\supset \multimap \subset$ IIII
$1113 \supset \backsim \supset \multimap \supset-\subset$ III

42 IIII II
$\supset-0-0-c \supset-\subset$
IIII $\supset \multimap \subset$
$\supset — — — —$ II
$131 \supset \smile$ III つ—๐っー

222 II II II

II II $\supset — — —$
II $\supset — — \subset$ II
II $\supset-\ldots \subset \supset$ ○

つ－0－cII II
$\supset \ldots \subset$ II $\supset \ldots$
$\supset-\subset \supset-\subset$ II
111111

dont se forment les graphes de connexité des nœuds suivants ：

15 50 soit θ

24
 soit le nœud non premier

soit

 soit

\Longleftrightarrow dual du second de 15 . s'y dessine la présentation

1113 \square autodual, du noud $\left(\frac{e}{9}\right.$ et les duaux (par combinaison des présentations)

soit les deux nœuds non premiers
 autodual de l'analogon ou, non alterné, de la maja vêtue

42 revient au même que le partage 24 .

1311 comme 1113, $24 \& 42$, + le dual

222 autodual du nœud non premier (chaîne)

 dual du deuxième de 24 . s'y dessinent la muta
 ou, non alternée, la maia nue
 autodual du nœud non premier

dual également (par permutation) du troisième de 24

\squaredual également du troisième de 24 , soit la présentation

s'en forment aussi les graphes de $14,42,1311$ et le second de 15 .
$111111 \quad$ comme pour 6 .

I. les graphes-nouds

1) tout graphe est graphe d'ombre d'état de nœud.
2) le nœud trivial est le nœud alterné tiré de l'ombre.
3) les portées répondent à $c \geq 5 p-R-1$ (formule établie dans le livre "plastique des nœuds rares", p. 154, paris, 1992)
A - système de production ${ }^{l}$:

$$
\begin{aligned}
& f: \quad \supset \backsim \subset \supset \text { faisceau } \\
& r: \quad \supset \backsim \rightarrow \supset — \bigcirc \subset \text { ribambelle } \\
& \mathcal{L}: \quad \supset \backsim \multimap \rightarrow \text { ○○ link }
\end{aligned}
$$

B - établissement de la table des nœuds
a) chaque graphe a un compagnon dual. la dualité est ainsi notée

1 - si le graphe est autodual, alors '*'.
2 - les deux compagnons duaux sont reliés par '
b) lorsque $p \geq 2$, le graphe porte la mention ' $\mathrm{x} n$ ' où $n \geq 2$ est le nombre d'états nœudiens ayant même ombre d'ornures différentes.
II. table des nouuds - les blancs du tableau sont utilisés pour dessiner les états de nœuds correspondant aux graphes

$\underbrace{\text { nombre }}_{\text {nombre d'arêtes }}$	2	3	4	5	6	7	8	9
2	$\underset{*}{\sim}$	(1)						
3	\Longrightarrow		θ					
4	$0-4-0$	ϱ_{0}^{*}	\square	θ	θ			
5	i				$\begin{aligned} & \left(\begin{array}{l} 8 \\ 8 \\ 3 \end{array}\right. \\ & \hdashline 8 \end{aligned}$			
6	i	$\begin{gathered} a-4-0 \\ \mathscr{M} \\ Q_{N_{2}} \end{gathered}$			(\%)		$\begin{gathered} \frac{6}{6} \\ \sqrt{6} \\ 6 \end{gathered}$	

[^2]
[^0]: ${ }^{1}$ on observe que les mots ΔK commencent toujours par Δ. la première lettre n'est en effet jamais identique à une précédente qui n'est pas là, elle en diffère bien plutôt, comme lettre diffère de son absence.
 ${ }^{2}$ il s'agit, on le voit, d'une sorte de code de grey inverse. 3

[^1]: ${ }_{3}^{2}$ par facilité typographique, nous écrirons parfois le dessin des arêtes en faisceau, par des suites de I.
 ${ }_{4}^{3}$ pour l'usage des termes faisceau, ribambelle et link, voir une production icsografique des nœeuds, p. X.
 ${ }^{4}$ sur la dénomination icsografique des nœuds centres, voir mots nœeudiens, $p . X$.

[^2]: ${ }^{1}$ cf. "l'ape comme système de production icsografique de nœud", p. 6

